POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation
نویسندگان
چکیده
منابع مشابه
Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملReduced Basis a Posteriori Error Bounds for Parametrized Linear–Quadratic Elliptic Optimal Control Problems
We employ the reduced basis method as a surrogate model for the solution of optimal control problems governed by parametrized partial differential equations (PDEs) and develop rigorous a posteriori error bounds for the error in the optimal control and the associated error in the cost functional. The proposed bounds can be efficiently evaluated in an offline-online computational procedure. We pr...
متن کاملCertified Reduced Basis Methods for Parametrized Saddle Point Problems
We present reduced basis approximations and associated rigorous a posteriori error bounds for parametrized saddle point problems. First, we develop new a posteriori error estimates that, unlike earlier approaches, provide upper bounds for the errors in the approximations of the primal variable and the Lagrange multiplier separately. The proposed method is an application of Brezzi’s theory for s...
متن کاملModel reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems
The main focus of this paper is on an a-posteriori analysis for different model-order strategies applied to optimal control problems governed by linear parabolic partial differential equations. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the reduced-order model, is from the (unknown) exact one. For the model-order reduction, H2,α-norm op...
متن کاملExtended Linear Formulation for Binary Quadratic Problems
We propose and test a new linearisation technique for the Binary Quadratic Problems (BQPs). We computationally prove that the new formulation, called Extended Linear Formulation, can be effective for different classes of problems in practice. Our tests are based on two sets of classical BQPs from the literature, i.e., the Unconstrained BQP and the Maximum Cut of edge-weighted graphs. Finally we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2020
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-020-01232-x